Spectral Statistics of Erdős-Rényi Graphs I: Local Semicircle Law
نویسندگان
چکیده
We consider the ensemble of adjacency matrices of Erdős-Rényi random graphs, i.e. graphs on N vertices where every edge is chosen independently and with probability p ≡ p(N). We rescale the matrix so that its bulk eigenvalues are of order one. We prove that, as long as pN →∞ (with a speed at least logarithmic in N), the density of eigenvalues of the Erdős-Rényi ensemble is given by the Wigner semicircle law for spectral windows of length larger than N−1 (up to logarithmic corrections). As a consequence, all eigenvectors are proved to be completely delocalized in the sense that the `∞-norms of the `-normalized eigenvectors are at most of order N−1/2 with a very high probability. The estimates in this paper will be used in the companion paper [13] to prove the universality of eigenvalue distributions both in the bulk and at the spectral edges under the further restriction that pN N.
منابع مشابه
Lifshits Tails for Spectra of Erdős-rényi Random Graphs by Oleksiy Khorunzhiy
We consider the discrete Laplace operator ∆ on Erdős–Rényi random graphs with N vertices and edge probability p/N . We are interested in the limiting spectral properties of ∆ as N → ∞ in the subcritical regime 0 < p < 1 where no giant cluster emerges. We prove that in this limit the expectation value of the integrated density of states of ∆ exhibits a Lifshits-tail behaviour at the lower spectr...
متن کاملLifshits Tails for Spectra of Erdős-rényi Random Graphs
We consider the discrete Laplace operator ∆ on Erdős–Rényi random graphs with N vertices and edge probability p/N . We are interested in the limiting spectral properties of ∆ as N → ∞ in the subcritical regime 0 < p < 1 where no giant cluster emerges. We prove that in this limit the expectation value of the integrated density of states of ∆ exhibits a Lifshits-tail behaviour at the lower spectr...
متن کاملLifshitz Tails for Spectra of Erdős–rényi Random Graphs
We consider the discrete Laplace operator ∆ on Erdős–Rényi random graphs with N vertices and edge probability p/N . We are interested in the limiting spectral properties of ∆ as N → ∞ in the subcritical regime 0 < p < 1 where no giant cluster emerges. We prove that in this limit the expectation value of the integrated density of states of ∆ exhibits a Lifshitz-tail behavior at the lower spectra...
متن کاملSpectra of "real-world" graphs: beyond the semicircle law.
Many natural and social systems develop complex networks that are usually modeled as random graphs. The eigenvalue spectrum of these graphs provides information about their structural properties. While the semicircle law is known to describe the spectral densities of uncorrelated random graphs, much less is known about the spectra of real-world graphs, describing such complex systems as the Int...
متن کاملLectures on the local semicircle law for Wigner matrices
These notes provide an introduction to the local semicircle law from random matrix theory, as well as some of its applications. We focus on Wigner matrices, Hermitian random matrices with independent upper-triangular entries with zero expectation and constant variance. We state and prove the local semicircle law, which says that the eigenvalue distribution of a Wigner matrix is close to Wigner’...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011